Dowolny wielokąt foremny - przekątne, wysokość, obwód, pole powierzchni


Kalkulator wielokąta foremnego pomoże obliczyć przekątne dowolnego wielokąta foremnego, długość boku, wysokość, pole powierzchni, obwód oraz promień okręgu opisanego i promień okręgu wpisanego w wielokąt foremny.



Obwód wielokąta foremnego


$$ L=a \cdot n $$






Wysokość wielokąta foremnego


$$ h=\frac{2\cdot a}{2\cdot \tan(\frac{\pi}{n})} \hspace{1mm}dla \hspace{1mm}n \hspace{1mm}parzystego $$ $$ h=\frac{a}{2\cdot \tan(\frac{\pi}{\frac{2}{n}})} \hspace{1mm}dla \hspace{1mm}n \hspace{1mm}nieparzystego $$






Pole wielokąta foremnego


$$ S=\frac {1}{4}\cdot n \cdot a^{2}\cdot \cot(\frac {\pi }{n}) = \frac{n\cdot a^{2}}{4\cdot \tan(\frac{\pi}{n})} $$






Promień okręgu opisanego na wielokącie foremnym


$$ R=\frac {a}{2\cdot \sin(\frac{\pi }{n})} $$








Promień okręgu wpisanego w wielokąt foremny


$$ r=\frac {a}{2\cdot \tan(\frac {\pi }{n})} = \frac {a}{2}\cdot \cot(\frac {\pi }{n}) $$






Ilość przekątnych wielokąta foremnego


$$ d=\frac {n(n-3)}{2} $$





Długości przekątnych wielokąta foremnego


$$ d_k=\frac{a\sin\frac{(k+1)\pi}{n}}{\sin\frac{\pi}{n}},$$ gdzie $$ k\in\mathbb{N},\ 1\le k\le n-3\,$$







Miara kąta wewnętrznego i miara kąta środkowego wielokąta foremnego


Miara kąta wewnętrznego (pomiędzy sąsiednimi bokami): $$ \gamma =\frac{\pi (n-2)}{n}\mathrm{rad} =\frac{180^{\circ }\cdot (n-2)}{n} $$ Miara kąta środkowego (czyli kąt, pod jakim widziany jest bok wielokąta z jego środka): $$ \beta =\frac {2\pi }{n}\mathrm {rad} =\frac {360^{\circ }}{n} $$







Przydatne Informacje

Ośmiokąt - wielokąt, który ma wszystkie kąty wewnętrzne równe i wszystkie boki równej długości. Najmniejszą możliwą liczbą boków wielokąta foremnego jest 3. Teoretycznie jest możliwy do skonstruowania dwukąt (dwubok) foremny, ale jest to przypadek zdegenerowany, wyglądałby on jak zwykły odcinek, a kąt między bokami wynosiłby 0°.

Ma on następujące własności:
  • a – długość jednego boku wielokąta;
  • n – liczba boków wielokąta foremnego, gdzie $$ n\in\mathbb{N}, n > 2.$$
  1. Wzór na obwód wielokąta foremnego: $$ L=n \cdot a $$
  2. Wzory na wysokość wielokąta formnego: $$ h=\frac{2\cdot a}{2\cdot \tan(\frac{\pi}{n})} \hspace{1mm}dla \hspace{1mm}n \hspace{1mm}parzystego $$ $$ h=\frac{a}{2\cdot \tan(\frac{\pi}{\frac{2}{n}})} \hspace{1mm}dla \hspace{1mm}n \hspace{1mm}nieparzystego $$
  3. Wzory na pole powierzchni wielokąta foremnego: $$ S=\frac{1}{4}na^2\operatorname{ctg}\frac{\pi}{n} $$ $$ =\frac{nar}{2}$$ $$ =nr^2\operatorname{tg}\frac{\pi}{n}$$ $$=nR^2\sin\frac{\pi}{n}\cos\frac{\pi}{n}$$ $$=\frac{1}{2}nR^2\sin\frac{2\pi}{n}$$
  4. Wzór na promień okręgu opisanego na wielokącie foremnym: $$ R=\frac{a}{2\sin\frac{\pi}{n}}=\frac{a}{2}\operatorname{csc}\frac{\pi}{n}$$
  5. Wzór na promień okręgu wpisanego w wielokąt foremny: $$ r=\frac{a}{2\operatorname{tg}\frac{\pi}{n}}=\frac{a}{2}\operatorname{ctg}\frac{\pi}{n} $$
  6. Wzór na ilość przekątnych wielokąta foremnego: $$ d=\frac {n(n-3)}{2} $$
  7. Wzór na długości przekątnych wielokąta foremnego: $$ d_k=\frac{a\sin\frac{(k+1)\pi}{n}}{\sin\frac{\pi}{n}},$$ gdzie $$ k\in\mathbb{N},\ 1\le k\le n-3\,$$
  8. Wzory na długość boku wielokąta foremnego: $$ a=2\sqrt{R^2-r^2}$$ $$ =2R\sin {\frac {\pi }{n}}$$ $$ =2r\operatorname {tg} {\frac {\pi }{n}}$$
  9. Kąt między dowolnymi sąsiednimi przekątnymi wychodzącymi z jednego wierzchołka (włącznie z bokami wychodzącymi z tego wierzchołka) $$ \gamma ={\frac {\pi }{n}}\mathrm {rad} ={\frac {180^{\circ }}{n}}$$
  10. Wzór na miarę kąta wewnętrznego (pomiędzy sąsiednimi bokami) wielokąta foremnego: $$ \gamma =\frac{\pi (n-2)}{n}\mathrm{rad} =\frac{180^{\circ }\cdot (n-2)}{n} $$
  11. Wzór na miarę kąta środkowego (czyli kąt, pod jakim widziany jest bok wielokąta z jego środka): $$ \beta =\frac {2\pi }{n}\mathrm {rad} =\frac {360^{\circ }}{n} $$





Użytkownicy tego kalkulatora korzystali również

Mnożenie ułamków krok po kroku.

Dzięki kalkulatorowi pomnożysz dowolne dwie liczby mieszane lub ułamki właściwe i ułamki niewłaściwe.
Kalkulator krok po kroku przedstawi w wyniku wykonane działania na ułamkach oraz poda wyjaśnienia wykonywanych czynności. Dowiesz się jak uprościć ułamki, jak ustalić najmniejszą wspólną wielokrotność oraz największy wspólny dzielnik.

Z kalkulatora korzystano 88 razy.



Komentarze



Komentarze (0)

Nikt nie komentował jeszcze. Nie wstydź się, bądź pierwszy/a ;)

Dodaj komentarz

* Wymagane informacje
1000
Captcha Image




Kalkulator podręczny