Trapez równoramienny - przekątne, wysokość, pole powierzchni, obwód, długości boków


Kalkulator pomoże obliczyć przekątne trapezu równoramiennego, długości boków, wysokość, pole powierzchni,obwód oraz promień okręgu opisanego. Każdą z wielkości możemy obliczyć za pomocą wielu wzorów, wystarczy wskazać co mamy dane.



Przekątna trapezu równoramiennego


Przekątna trapezu równoramiennego z boków (a) i (c) oraz kąta α

$$ d=\sqrt{a^2+c^2-2ac\cdot \cos(\beta)} $$

Przekątna trapezu równoramiennego z boków (b) i (c) oraz kąta β

$$ d=\sqrt{b^2+c^2-2bc\cdot \cos(\beta)} $$

Przekątna trapezu równoramiennego z boków (a)(b)(c)

$$ d= \sqrt{a\cdot b+c^2} $$

Przekątna trapezu równoramiennego z pola powierzchni i kąta γ

$$ d= \frac{2S}{\sin \gamma} $$
Przekątna trapezu równoramiennego




Długość promienia okręgu opisanego na trapezie równoramiennym


Długość promienia okręgu opisanego z przekątnej (d) i kąta α lub β

$$ R=\frac{d}{2\sin \alpha} $$ $$ R=\frac{d}{2\sin \beta} $$

Długość promienia okręgu opisanego z ramienia (c), przekątnej (d) i wysokości (h)

$$ R=\frac{c\cdot d}{2h} $$

Długość promienia okręgu opisanego z boków (a)(b)(c)

$$ R= c\cdot\sqrt{\frac{a\cdot b + c^2}{4c^2-(a-b)^2}} $$
Długość promienia okręgu opisanego na trapezie równoramiennym




Wysokość trapezu równoramiennego


Wysokość trapezu z boków (a)(b) i pola powierzchni

$$ h=\frac{2S}{a+b} $$

Wysokość trapezu z ramienia (c) i kąta

$$ h=c \cdot \sin \alpha = c \cdot \sin \beta $$

Wysokość trapezu z boków

$$ h= \frac{\sqrt{4c^2 - (a-b)^2 }}{2} $$
Wysokość trapezu







Pole powierzchni trapezu równoramiennego


Pole powierzchni trapezu z podstaw (a) i (b) oraz wysokości (h)

$$ S={\frac {a+b}{2}}\cdot h $$

Pole powierzchni trapezu z boków i kąta(α)

$$ S=\frac{(a+b)\cdot c\cdot \sin\alpha}{2} $$

Pole powierzchni trapezu z boków (a)(b)(c)

$$ S=\frac{\sqrt{(a+b)^2\cdot(a-b+2c)\cdot(b-a+2c)}}{4} $$

Pole powierzchni trapezu z przekątnej (d) i kąta(γ)

$$ S=\frac{d^2}{2}\cdot\sin\gamma $$
Pole powierzchni trapezu równoramiennego



Obwód trapezu równoramiennego


Obwód trapezu z boków

$$ L = a + b + 2c $$

Obwód trapezu z podstaw, wysokości i kąta(α)

$$ L = a+b+\frac{2h}{\sin(\alpha)} $$
Obwód trapezu równoramiennego



Boki trapezu równoramiennego


Podstawa (a) trapezu z boków (b)(c) i wysokości (h)

$$ a=b+2\sqrt{c^2-h^2} $$

Podstawa (b) trapezu z boków (a)(c) i wysokości (h)

$$ b=a-2\sqrt{c^2-h^2} $$

Ramię (c) trapezu z boków (a)(b) i wysokości (h)

$$ c=\sqrt{(\frac{a-b}{2})^2 +h^2} $$
Boki trapezu równoramiennego



Środkowa trapezu równoramiennego


Środkowa trapezu równoramiennego

$$ m=\frac {a+b}{2} $$
Środkowa trapezu równoramiennego







Trapez - Informacje

Trapez – czworokąt mający przynajmniej jedną parę równoległych boków; (wybraną) parę boków równoległych nazywa się podstawami, pozostałe boki noszą nazwę ramion, odległość między podstawami nazywa się wysokością trapezu. Niektóre potoczne definicje określają trapez jako czworokąt mający tylko jedną parę boków równoległych i zgodnie z nimi równoległobok nie jest trapezem. Suma kątów leżących przy tym samym ramieniu wynosi 180°.

Trapez równoramienny to trapez o ramionach równej długości. Jeśli taki trapez nie jest równoległobokiem niebędącym prostokątem, to ma on oś symetrii: przechodzącą przez środki podstaw ich wspólną symetralną. W tym przypadku kąty między ramionami a daną podstawą są równe, a kąty przeciwległe sumują się do 180°; stąd można go wtedy wpisać w okrąg.

Trapez równoramienny


Trapez równoramienny ma następujące własności:
  1. Trapez jest figurą wypukłą.
  2. Suma miar wszystkich kątów wewnętrznych wynosi 2Π (360°), a suma miar dwóch sąsiednich kątów wewnętrznych leżących przy tym samym ramieniu wynosi Π, $$ \alpha + \beta = 180° $$
  3. Wzór na kąt α $$ \alpha = \arccos( \frac{(\frac{a-b}{2})^2 + c^2-h^2 }{2c\cdot\frac{a-b}{2}} ) $$
  4. Wzór na przekątną trapezu równoramiennego z boków (a) i (c) oraz kąta α
  5. $$ d=\sqrt{a^2+c^2-2ac\cdot \cos(\beta)} $$
  6. Wzór na przekątną trapezu równoramiennego z boków (b) i (c) oraz kąta β
  7. $$ d=\sqrt{b^2+c^2-2bc\cdot \cos(\beta)} $$
  8. Wzór na przekątną trapezu równoramiennego z boków (a)(b)(c)
  9. $$ d= \sqrt{a\cdot b+c^2} $$
  10. Wzór na przekątną trapezu równoramiennego z pola powierzchni i kąta γ
  11. $$ d= \frac{2S}{\sin \gamma} $$
  12. Wzór na długość promienia okręgu opisanego na trapezie równoramiennym z przekątnej (d) i kąta α lub β
  13. $$ R=\frac{d}{2\sin \alpha} $$ $$ R=\frac{d}{2\sin \beta} $$
  14. Wzór na długość promienia okręgu opisanego na trapezie równoramiennym z ramienia (c), przekątnej (d) i wysokości (h)
  15. $$ R=\frac{c\cdot d}{2h} $$
  16. Wzór na długość promienia okręgu opisanego na trapezie równoramiennym z boków (a)(b)(c)
  17. $$ R= c\cdot\sqrt{\frac{a\cdot b + c^2}{4c^2-(a-b)^2}} $$
  18. Wzór na wysokość trapezu równoramiennego z boków (a)(b) i pola powierzchni
  19. $$ h=\frac{2S}{a+b} $$
  20. Wzór na wysokość trapezu równoramiennego z ramienia (c) i kąta
  21. $$ h=c \cdot \sin \alpha = c \cdot \sin \beta $$
  22. Wzór na wysokość trapezu równoramiennego z boków
  23. $$ h= \frac{\sqrt{4c^2 - (a-b)^2 }}{2} $$
  24. Wzór na pole powierzchni trapezu równoramiennego z podstaw (a) i (b) oraz wysokości (h)
  25. $$ S={\frac {a+b}{2}}\cdot h $$
  26. Wzór na pole powierzchni trapezu równoramiennego z boków i kąta(α)
  27. $$ S=\frac{(a+b)\cdot c\cdot \sin\alpha}{2} $$
  28. Wzór na pole powierzchni trapezu równoramiennego z boków (a)(b)(c)
  29. $$ S=\frac{\sqrt{(a+b)^2\cdot(a-b+2c)\cdot(b-a+2c)}}{4} $$
  30. Wzór na pole powierzchni trapezu równoramiennego z przekątnej (d) i kąta(γ)
  31. $$ S=\frac{d^2}{2}\cdot\sin\gamma $$
  32. Wzór na obwód trapezu równoramiennego z boków
  33. $$ L = a + b + 2c $$
  34. Wzór na obwód trapezu równoramiennego z podstaw, wysokości i kąta(α)
  35. $$ L = a+b+\frac{2h}{\sin(\alpha)} $$
  36. Wzór na długość podstawy (a) trapezu równoramiennego z boków (b)(c) i wysokości (h)
  37. $$ a=b+2\sqrt{c^2-h^2} $$
  38. Wzór na długość podstawy (b) trapezu równoramiennego z boków (a)(c) i wysokości (h)
  39. $$ b=a-2\sqrt{c^2-h^2} $$
  40. Wzór na długość ramienia (c) trapezu równoramiennego z boków (a)(b) i wysokości (h)
  41. $$ c=\sqrt{(\frac{a-b}{2})^2 +h^2} $$
  42. Wzór na środkową trapezu równoramiennego $$ m=\frac {a+c}{2} $$





Użytkownicy tego kalkulatora korzystali również

Mnożenie ułamków krok po kroku.

Dzięki kalkulatorowi pomnożysz dowolne dwie liczby mieszane lub ułamki właściwe i ułamki niewłaściwe.
Kalkulator krok po kroku przedstawi w wyniku wykonane działania na ułamkach oraz poda wyjaśnienia wykonywanych czynności. Dowiesz się jak uprościć ułamki, jak ustalić najmniejszą wspólną wielokrotność oraz największy wspólny dzielnik.

Trapez- przekątne, wysokość, pole, obwód, boki

Kalkulator pomoże obliczyć przekątne trapezu, długości boków, wysokości, pole powierzchni oraz obwód. Każdą z wielkości możemy obliczyć za pomocą wielu wzorów, wystarczy wskazać co mamy dane.

Z kalkulatora korzystano 128 razy.



Komentarze



Komentarze (0)

Nikt nie komentował jeszcze. Nie wstydź się, bądź pierwszy/a ;)

Dodaj komentarz

* Wymagane informacje
1000
Captcha Image




Podręczny kalkulator online